Logo Normandie Logo Europe Logo de La Manche

The antifouling effects of copper-oxide filler incorporated into paint-based protective films applied to steam surface condenser tubes

Résumé : Paint-based protective films (PPFs) are used to protect condenser tubes from corrosion and erosion but have been shown to be susceptible to biofouling. Here the biocidal properties of copper-oxide fillers incorporated into PPFs are explored in this paper. Specifically two PPFs filled with 20% and 50% filler (by weight) are tested in parallel with a non-biocidal ordinary epoxy PPF, and bare stainless steel tube. Using double-pipe co-current flow heat exchangers installed at a thermal power plant, actual cooling water exiting the condenser is evenly distributed between the test tubes. Heat transfer in the condenser is simulated by heated water flowing through each annulus of the double-pipe heat exchangers, thereby maintaining repeatable outer convection conditions. An exposure test of 125 days shows that the 50% biocide filled PPF has the lowest fouling factor of all the tubes. The non-biocidal epoxy has the highest fouling factor and the 20% filled PPF behaves similarly. Both of these are greater than the bare stainless steel control tube. The 50 % filled PPF is compared to the fouling of an existing admiralty brass tube and the shape of the fouling curves are similar. This evidence suggests that provided the filler concentration is sufficiently high, there is the potential for the copper-oxide filler to reduce the asymptotic composite fouling factor by virtue of its antibacterial properties.
Domaine de référence : Antifouling
Auteur Reuter Hanno C., Owen Michael, Goodenough John
Année de parution : 2018.
Type de document : Article de revue.
Exporter la référence : BibTeX | Zotero RDF | RIS (EndNote)

Ce projet est financé par le Fonds Européen de Développement Régional, la Région Normandie et le Conseil Départemental de la Manche.